

Gap vectors of real projective varieties

Martina Juhnke-Kubitzke (joint with Greg Blekherman, Sadik Iliman, Mauricio Velasco)

Institute of Mathematics, University of Osnabrück

October 7th, 2015

1 Introduction: The classical setting

2 Dimensions of the faces of P_X and Σ_X

3 Dimensional differences and gap vectors

Outline

1 Introduction: The classical setting

2 Dimensions of the faces of P_X and Σ_X

3 Dimensional differences and gap vectors

The main actors

A polynomial $p \in \mathbb{R}[x_1, \dots, x_m]$ is non-negative if $p(x) \geq 0$ for all $x \in \mathbb{R}^m$.

The main actors

A polynomial $p \in \mathbb{R}[x_1, \dots, x_m]$ is non-negative if $p(x) \geq 0$ for all $x \in \mathbb{R}^m$.

A polynomial $p \in \mathbb{R}[x_1, \dots, x_m]$ is a sum of squares if there exist $p_i \in \mathbb{R}[x_1, \dots, x_m]$ such that $p = \sum_i p_i^2$.

The main actors

A polynomial $p \in \mathbb{R}[x_1, \dots, x_m]$ is non-negative if $p(x) \geq 0$ for all $x \in \mathbb{R}^m$.

A polynomial $p \in \mathbb{R}[x_1, \dots, x_m]$ is a sum of squares if there exist $p_i \in \mathbb{R}[x_1, \dots, x_m]$ such that $p = \sum_i p_i^2$.

Central question: When can a non-negative polynomial be written as a sum of squares?

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

p is bivariate (univariate non-homogeneous case),

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,
- p is of degree 4 in 3 variables (ternary quartics).

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,
- p is of degree 4 in 3 variables (ternary quartics).

In all other cases, there exist non-negative polynomials that are not sums of squares.

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,
- p is of degree 4 in 3 variables (ternary quartics).

In all other cases, there exist non-negative polynomials that are not sums of squares.

Though Hilbert did not provide an example, his proof can be used for the construction of such polynomials (Robinson, Reznick, etc.).

The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not a sum of squares (Motzkin, around 1965).

$$M(x,y,z) := x^2y^4 + x^4y^2 + z^6 - 3x^2y^2z^2$$

The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not a sum of squares (Motzkin, around 1965).

$$M(x,y,z) := x^2y^4 + x^4y^2 + z^6 - 3x^2y^2z^2$$

It can be shown that ...

■ M(x, y, z) is non-negative (arithmetic-geometric mean inequality):

$$\frac{x^2y^4 + x^4y^2 + z^6}{3} \ge \sqrt[3]{(x^2y^4)(x^4y^2)(z^6)}.$$

The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not a sum of squares (Motzkin, around 1965).

$$M(x,y,z) := x^2y^4 + x^4y^2 + z^6 - 3x^2y^2z^2$$

It can be shown that ...

■ M(x, y, z) is non-negative (arithmetic-geometric mean inequality):

$$\frac{x^2y^4 + x^4y^2 + z^6}{3} \ge \sqrt[3]{(x^2y^4)(x^4y^2)(z^6)}.$$

M(x, y, z) cannot be written as a sum of squares.

A related question: Hilbert's 17th Problem

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$f = \sum_{i} \left(\frac{g_i}{h_i}\right)^2 ?$$

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$f = \sum_{i} \left(\frac{g_i}{h_i}\right)^2 ?$$

Equivalently:

Given a non-negative polynomial f, does there exist a sum of squares g such that $f \cdot g$ is a sum of squares:

$$f \cdot g = \sum_{i} p_i^2 ?$$

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$f = \sum_{i} \left(\frac{g_i}{h_i}\right)^2 ?$$

Equivalently:

Given a non-negative polynomial f, does there exist a sum of squares g such that $f \cdot g$ is a sum of squares:

$$f \cdot g = \sum_{i} p_i^2 ?$$

Answer: YES! (Artin, 1927)

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$f = \sum_{i} \left(\frac{g_i}{h_i}\right)^2 ?$$

Equivalently:

Given a non-negative polynomial f, does there exist a sum of squares g such that $f \cdot g$ is a sum of squares:

$$f \cdot g = \sum_{i} p_i^2 ?$$

Answer: YES! (Artin, 1927)

BUT: Degree of the multiplier may be very large.

The Motzkin polynomial revisited

Recall:

$$M(x,y,z) := x^2y^4 + x^4y^2 + z^6 - 3x^2y^2z^2$$

The Motzkin polynomial revisited

Recall:

$$M(x,y,z) := x^2y^4 + x^4y^2 + z^6 - 3x^2y^2z^2$$

 $(x^2 + y^2)^2 \cdot M(x, y, z)$ can be written as a sum of squares.

$$(x^{2} + y^{2})^{2} \cdot M(x, y, z) = ((x^{2} - y^{2})z^{3})^{2} + (x^{2}y(x^{2} + y^{2} - 2z^{2}))^{2} + (xy^{2}(x^{2} + y^{2} - 2z^{2}))^{2} + (xyz(x^{2} + y^{2} - 2z^{2}))^{2}$$

The Motzkin polynomial revisited

Recall:

$$M(x,y,z) := x^2y^4 + x^4y^2 + z^6 - 3x^2y^2z^2$$

 $(x^2 + y^2)^2 \cdot M(x, y, z)$ can be written as a sum of squares.

$$(x^{2} + y^{2})^{2} \cdot M(x, y, z) = ((x^{2} - y^{2})z^{3})^{2} + (x^{2}y(x^{2} + y^{2} - 2z^{2}))^{2} + (xy^{2}(x^{2} + y^{2} - 2z^{2}))^{2} + (xyz(x^{2} + y^{2} - 2z^{2}))^{2}$$

 $\Rightarrow M(x, y, z)$ can be written a sum of squares of rational functions with denominator $x^2 + y^2$.

real projective variety

$$X \subset \mathbb{RP}^m$$

real projective variety

$$I(X) \subseteq \mathbb{R}[x_0,\ldots,x_m]$$

real radical ideal of X

$$X \subseteq \mathbb{RP}^m$$

real projective variety

$$I(X) \subseteq \mathbb{R}[x_0,\ldots,x_m]$$

real radical ideal of X

$$R = \mathbb{R}[x_0, \dots, x_m]/I(X)$$

coordinate ring of \boldsymbol{X}

$$X \subset \mathbb{RP}^m$$

real projective variety

$$I(X) \subseteq \mathbb{R}[x_0,\ldots,x_m]$$

real radical ideal of X

$$R = \mathbb{R}[x_0, \dots, x_m]/I(X)$$

coordinate ring of X

$$P_X \subseteq R_2$$

quadratic polynomials that are non-negative on X

$$X \subseteq \mathbb{RP}^m$$

real projective variety

$$I(X) \subseteq \mathbb{R}[x_0,\ldots,x_m]$$

real radical ideal of X

$$R = \mathbb{R}[x_0,\ldots,x_m]/I(X)$$

coordinate ring of \boldsymbol{X}

$$P_X \subseteq R_2$$

quadratic polynomials that are non-negative on X

$$\Sigma_X \subseteq R_2$$

quadratic polynomials that are sums of squares of linear forms in R

$$X \subseteq \mathbb{RP}^m$$

real projective variety

$$I(X) \subseteq \mathbb{R}[x_0,\ldots,x_m]$$

real radical ideal of X

$$R=\mathbb{R}[x_0,\ldots,x_m]/I(X)$$

coordinate ring of \boldsymbol{X}

$$P_X \subseteq R_2$$

quadratic polynomials that

are non-negative on
$$X$$

$$\Sigma_X \subseteq R_2$$

quadratic polynomials that

are sums of squares of linear forms in R

Question: When is $P_X = \Sigma_X$?

A non-degenerate irreducible variety $X\subseteq\mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

A non-degenerate irreducible variety $X \subseteq \mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

Theorem (Del Pezzo, 1886; Bertini, 1908)

X is a variety of minimal degree if and only if X is one of the following:

A non-degenerate irreducible variety $X\subseteq\mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

Theorem (Del Pezzo, 1886; Bertini, 1908)

X is a variety of minimal degree if and only if *X* is one of the following:

a quadratic hypersurface,

A non-degenerate irreducible variety $X\subseteq\mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

Theorem (Del Pezzo, 1886; Bertini, 1908)

X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,
- the Veronese embedding of \mathbb{CP}^2 into \mathbb{CP}^5 ,

A non-degenerate irreducible variety $X\subseteq\mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

Theorem (Del Pezzo, 1886; Bertini, 1908)

X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,
- the Veronese embedding of \mathbb{CP}^2 into \mathbb{CP}^5 ,
- a rational normal scroll,

A non-degenerate irreducible variety $X\subseteq\mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

Theorem (Del Pezzo, 1886; Bertini, 1908)

X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,
- the Veronese embedding of \mathbb{CP}^2 into \mathbb{CP}^5 ,
- a rational normal scroll,
- a (multiple) cone over any of the above.

When is $P_X = \Sigma_X$?

A non-degenerate irreducible variety $X\subseteq\mathbb{CP}^m$ is called a variety of minimal degree if

$$\deg(X) = \operatorname{codim}(X) + 1.$$

Theorem (Blekherman, Smith, Velasco; 2013)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real irreducible projective variety.

Then $P_X = \Sigma_X$ if and only if $X(\mathbb{C})$ is a variety of minimal degree.

Hilbert considered homogeneneous polynomials of even degree.

Hilbert considered homogeneneous polynomials of even degree.

Blekherman, Smith and Velasco restricted to degree 2 polynomials.

Hilbert considered homogeneneous polynomials of even degree.

Blekherman, Smith and Velasco restricted to degree 2 polynomials.

Their classification also solves the problem for polynomials of arbitrary even degree:

Hilbert considered homogeneneous polynomials of even degree.

Blekherman, Smith and Velasco restricted to degree 2 polynomials.

Their classification also solves the problem for polynomials of arbitrary even degree:

Under the d^{th} Veronese embedding:

$$\nu_d: \mathbb{RP}^m \to \mathbb{RP}^{\binom{m+d}{d}-1}$$

$$[x_0: x_1: \dots: x_m] \mapsto [x_0^d: x_0^{d-1}x_1: \dots: x_m^d]$$

polynomials of degree 2d on X correspond to polynomials of degree 2 on $\nu_d(X)$.

Hilbert considered homogeneneous polynomials of even degree.

Blekherman, Smith and Velasco restricted to degree 2 polynomials.

Their classification also solves the problem for polynomials of arbitrary even degree:

Under the d^{th} Veronese embedding:

$$\nu_d: \mathbb{RP}^m \to \mathbb{RP}^{\binom{m+d}{d}-1}$$

$$[x_0: x_1: \dots: x_m] \mapsto [x_0^d: x_0^{d-1}x_1: \dots: x_m^d]$$

polynomials of degree 2d on X correspond to polynomials of degree 2 on $\nu_d(X)$.

Hence:
$$P_{X,2d} = P_{\nu_d(X)}$$
 and $\Sigma_{X,2d} = \Sigma_{\nu_d(X)}$.

■ Testing non-negativity is NP-hard.

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.
- Many problems in combinatorial optimization can be modelled as minimizing a quadratic function p on a semialgebraic set X.

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.
- Many problems in combinatorial optimization can be modelled as minimizing a quadratic function p on a semialgebraic set X.

If our aim is to determine the minimum

$$p^* = \min_{x \in X} p(x) = \max_{p - \lambda \in P_X} \lambda,$$

we can instead compute the approximation

$$p_{SOS} = \max_{p-\lambda \in \Sigma_X} \lambda.$$

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.
- Many problems in combinatorial optimization can be modelled as minimizing a quadratic function p on a semialgebraic set X.

If our aim is to determine the minimum

$$p^* = \min_{x \in X} p(x) = \max_{p - \lambda \in P_X} \lambda,$$

we can instead compute the approximation

$$p_{SOS} = \max_{p-\lambda \in \Sigma_X} \lambda.$$

The difference between P_X and Σ_X determines the quality of the approximation.

• What geometric features of X control the dimensions of generic exposed faces of P_X and Σ_X ?

- What geometric features of X control the dimensions of generic exposed faces of P_X and Σ_X ?
- **Dimensional differences** between exposed faces of P_X and Σ_X .

- What geometric features of X control the dimensions of generic exposed faces of P_X and Σ_X ?
- Dimensional differences between exposed faces of P_X and Σ_X .
- Combinatorics and geometry of gap vectors.

- What geometric features of X control the dimensions of generic exposed faces of P_X and Σ_X ?
- Dimensional differences between exposed faces of P_X and Σ_X .
- Combinatorics and geometry of gap vectors.
- Gap vectors of Veronese varieties.

Outline

1 Introduction: The classical setting

2 Dimensions of the faces of P_X and Σ_X

3 Dimensional differences and gap vectors

Setting

$$X \subset \mathbb{RP}^m$$

non-degenerate, real projective variety

$$I(X) \subseteq \mathbb{R}[x_0,\ldots,x_m]$$

real radical ideal of X

$$R = \mathbb{R}[x_0, \dots, x_m]/I(X)$$

coordinate ring of X

$$P_X \subseteq R_2$$

quadratic polynomials that are non-negative on X

$$\Sigma_X \subseteq R_2$$

quadratic polynomials that are sums of squares of linear forms in R

 $X \subseteq \mathbb{RP}^m$

non-degenerate, real projective variety

 $X \subseteq \mathbb{RP}^m$

For $\Gamma \subseteq X$ let:

non-degenerate, real projective variety

 $P(\Gamma)$ be the set of forms in P_X that vanish on Γ .

 $\Sigma(\Gamma)$ be the set of forms in Σ_X that vanish on Γ .

 $X \subset \mathbb{RP}^m$

non-degenerate, real projective variety

For $\Gamma \subseteq X$ let:

 $P(\Gamma)$ be the set of forms in P_X that vanish on Γ .

 $\Sigma(\Gamma)$ be the set of forms in Σ_X that vanish on Γ .

Note:

 \blacksquare P_X and Σ_X are full-dimensional, convex, pointed cones in R_2 .

 $X \subseteq \mathbb{RP}^m$

non-degenerate, real projective variety

For $\Gamma \subseteq X$ let:

 $P(\Gamma)$ be the set of forms in P_X that vanish on Γ .

 $\Sigma(\Gamma)$ be the set of forms in Σ_X that vanish on Γ .

Note:

- $ightharpoonup P_X$ and Σ_X are full-dimensional, convex, pointed cones in R_2 .
- $P(\Gamma)$ and $\Sigma(\Gamma)$ are exposed faces of P_X and Σ_X .

 $X \subseteq \mathbb{RP}^m$

non-degenerate, real projective variety

For $\Gamma \subseteq X$ let:

 $P(\Gamma)$ be the set of forms in P_X that vanish on Γ .

 $\Sigma(\Gamma)$ be the set of forms in Σ_X that vanish on Γ .

Note:

- P_X and Σ_X are full-dimensional, convex, pointed cones in R_2 .
- $P(\Gamma)$ and $\Sigma(\Gamma)$ are exposed faces of P_X and Σ_X .

In this talk: We want to determine the dimensions of generic exposed faces $P(\Gamma)$ and $\Sigma(\Gamma)$.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle \Gamma \rangle$ that is spanned by Γ

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle \Gamma \rangle$ that is spanned by Γ and let S be the homogeneous coordinate ring of Y.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle \Gamma \rangle$ that is spanned by Γ and let S be the homogeneous coordinate ring of Y.

Then

$$\dim \Sigma(\Gamma) = \dim S_2$$
.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle \Gamma \rangle$ that is spanned by Γ and let S be the homogeneous coordinate ring of Y.

Then

$$\dim \Sigma(\Gamma) = \dim S_2.$$

Regarding non-negative polynomials, we cannot determine the dimension of $P(\Gamma)$ for any set of points $\Gamma \subseteq X$.

We need an extra condition: independence.

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ
- Γ is independent if

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ
- Γ is independent if
- (1) the equality $\langle \Gamma \rangle \cap X = \Gamma$ holds,

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ
- Γ is independent if
- (1) the equality $\langle \Gamma \rangle \cap X = \Gamma$ holds,
- (2) the projective subspace $\langle \Gamma \rangle$ has dimension $|\Gamma| 1$, and,

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ

 Γ is independent if

- (1) the equality $\langle \Gamma \rangle \cap X = \Gamma$ holds,
- (2) the projective subspace $\langle \Gamma \rangle$ has dimension $|\Gamma|-1$, and,
- (3) for every point $p \in \Gamma$, the equality $T_p(X) \cap \langle \Gamma \rangle = \{p\}$ holds, where $T_p(X)$ is the tangent space of X at p.

Independent sets

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ

Γ is independent if

- (1) the equality $\langle \Gamma \rangle \cap X = \Gamma$ holds,
- (2) the projective subspace $\langle \Gamma \rangle$ has dimension $|\Gamma|-1$, and,
- (3) for every point $p \in \Gamma$, the equality $T_p(X) \cap \langle \Gamma \rangle = \{p\}$ holds, where $T_p(X)$ is the tangent space of X at p.

Geometrically:

 \blacksquare (2) means that the points in Γ are projectively independent.

Independent sets

- $\Gamma \subseteq X$ finite set of non-singular points
- $\langle \Gamma \rangle$ projective subspace of \mathbb{RP}^m spanned by Γ

Γ is independent if

- (1) the equality $\langle \Gamma \rangle \cap X = \Gamma$ holds,
- (2) the projective subspace $\langle \Gamma \rangle$ has dimension $|\Gamma| 1$, and,
- (3) for every point $p \in \Gamma$, the equality $T_p(X) \cap \langle \Gamma \rangle = \{p\}$ holds, where $T_p(X)$ is the tangent space of X at p.

Geometrically:

- \blacksquare (2) means that the points in Γ are projectively independent.
- (1) and (3) say that $\langle \Gamma \rangle$ and X intersect transversely and the intersection is Γ .

 $X \subseteq \mathbb{RP}^m$ non-degenerate variety of codimension c. Then:

 $X \subseteq \mathbb{RP}^m$ non-degenerate variety of codimension c. Then:

(1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^c .

- $X \subseteq \mathbb{RP}^m$ non-degenerate variety of codimension c. Then:
- (1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^c .
- (2) If $X(\mathbb{C})$ is of minimal degree, then the set of independent (c+1)-tuples of points of X is a non-empty open dense subset of X^{c+1} .

 $X \subseteq \mathbb{RP}^m$ non-degenerate variety of codimension c. Then:

- (1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^c .
- (2) If $X(\mathbb{C})$ is of minimal degree, then the set of independent (c+1)-tuples of points of X is a non-empty open dense subset of X^{c+1} .
- (3) The maximum cardinality of an independent set of points of X is c, unless $X(\mathbb{C})$ is a variety of minimal degree, in which case it is c+1.

 $X \subseteq \mathbb{RP}^m$ non-degenerate variety of codimension c. Then:

- (1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^c .
- (2) If $X(\mathbb{C})$ is of minimal degree, then the set of independent (c+1)-tuples of points of X is a non-empty open dense subset of X^{c+1} .
- (3) The maximum cardinality of an independent set of points of X is c, unless $X(\mathbb{C})$ is a variety of minimal degree, in which case it is c+1.

Bottom line: A generic set of points of size $\leq c$ is independent.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points.

Then

$$\dim P(\Gamma) = \dim R_2 - |\Gamma|(\dim X + 1).$$

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points.

Then

$$\dim P(\Gamma) = \dim R_2 - |\Gamma|(\dim X + 1).$$

■ We first show that $P(\Gamma)$ is full-dimensional in the vector space of quadratic forms vanishing to order ≥ 2 at all points of Γ .

Outline

1 Introduction: The classical setting

2 Dimensions of the faces of P_X and Σ_X

3 Dimensional differences and gap vectors

 $X \subseteq \mathbb{RP}^m$ non-degenerate, real projective variety

 $X \subseteq \mathbb{RP}^m$ non-degenerate, real projective variety

For
$$1 \le \ell \le \operatorname{codim}(X) = c$$
, we set

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma),$$

where $\Gamma \subseteq X$ is a generic set of points with $|\Gamma| = \ell$.

 $X \subseteq \mathbb{RP}^m$ non-degenerate, real projective variety

For
$$1 \le \ell \le \operatorname{codim}(X) = c$$
, we set

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma),$$

where $\Gamma \subseteq X$ is a generic set of points with $|\Gamma| = \ell$.

$$g(X) = (g_1(X), g_2(X), \dots, g_c(X))$$
 is called gap vector of X .

 $X \subseteq \mathbb{RP}^m$ non-degenerate, real projective variety

For
$$1 \le \ell \le \operatorname{codim}(X) = c$$
, we set

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma),$$

where $\Gamma \subseteq X$ is a generic set of points with $|\Gamma| = \ell$.

$$g(X) = (g_1(X), g_2(X), \dots, g_c(X))$$
 is called gap vector of X .

The gap vector measures dimensional differences between generic exposed faces of P_X and Σ_X .

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate variety of codimension c.

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate variety of codimension c. The number

$$\epsilon(X) := \binom{c+1}{2} - \dim I(X)_2$$

is called quadratic deficiency of X.

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate variety of codimension c. The number

$$\epsilon(X) := {c+1 \choose 2} - \dim I(X)_2$$

is called quadratic deficiency of X.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points of cardinality $\ell \leq \operatorname{codim}(X)$.

Let Y be the projection of X away from $\langle \Gamma \rangle$.

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate variety of codimension c. The number

$$\epsilon(X) := {c+1 \choose 2} - \dim I(X)_2$$

is called quadratic deficiency of X.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X \subseteq \mathbb{RP}^m$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points of cardinality $\ell \leq \operatorname{codim}(X)$.

Let Y be the projection of X away from $\langle \Gamma \rangle$.

Then

$$g_{\ell}(X) = \epsilon(X) - \epsilon(Y).$$

Recall:

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma), \quad \text{ for } 1 \leq \ell \leq \operatorname{codim}(X) = c$$

Recall:

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma), \quad \text{ for } 1 \leq \ell \leq \operatorname{codim}(X) = c$$

(1)
$$g_c(X) = \epsilon(X) = {c+1 \choose 2} - \dim I(X)_2$$

Recall:

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma), \quad \text{ for } 1 \leq \ell \leq \operatorname{codim}(X) = c$$

(1)
$$g_c(X) = \epsilon(X) = {c+1 \choose 2} - \dim I(X)_2$$

(2)
$$g_{c-1}(X) = \begin{cases} 0, & \text{if } X \text{ is a variety of minimal degree.} \\ \epsilon(X) - 1, & \text{otherwise.} \end{cases}$$

Combinatorics of gap vectors (cont'd)

Recall:

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma), \quad \text{ for } 1 \le \ell \le \operatorname{codim}(X) = c$$

(3)
$$0 \le g_1(X) \le g_2(X) \le \cdots \le g_c(X)$$

Combinatorics of gap vectors (cont'd)

Recall:

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma), \quad \text{ for } 1 \le \ell \le \operatorname{codim}(X) = c$$

The gap vector has the following properties:

(3)
$$0 \le g_1(X) \le g_2(X) \le \cdots \le g_c(X)$$

(4) $g_{j+1}(X) - g_j(X) \le c - j$ for $1 \le j \le c - 1$ (bounded growth). Moreover, we can classify the situation, when extremal growth occurs.

Combinatorics of gap vectors (cont'd)

Recall:

$$g_{\ell}(X) = \dim P(\Gamma) - \dim \Sigma(\Gamma), \quad \text{ for } 1 \le \ell \le \operatorname{codim}(X) = c$$

- (3) $0 \le g_1(X) \le g_2(X) \le \cdots \le g_c(X)$
- (4) $g_{j+1}(X) g_j(X) \le c j$ for $1 \le j \le c 1$ (bounded growth). Moreover, we can classify the situation, when extremal growth occurs.
- (5) If $g_{s+1}(X) g_s(X) = c s$ for some s < c, then $g_{j+1}(X) g_j(X) = c j$ for all $s \le j \le c 1$.

Theorem (Blekherman, Iliman, J., Velasco)

(1) g(X) = 0 (componentwise) if and only if X is a variety of minimal degree.

Theorem (Blekherman, Iliman, J., Velasco)

- (1) g(X) = 0 (componentwise) if and only if X is a variety of minimal degree.
- (2) g(X) has only one non-zero component if and only if $\epsilon(X) = 1$. In this case g(X) = (0, ..., 0, 1).

Theorem (Blekherman, Iliman, J., Velasco)

- (1) g(X) = 0 (componentwise) if and only if X is a variety of minimal degree.
- (2) g(X) has only one non-zero component if and only if $\epsilon(X) = 1$. In this case g(X) = (0, ..., 0, 1).

Note:

(1) rediscovers the result by Blekherman, Smith and Velasco showing that $P_X \neq \Sigma_X$ if X is not of minimal degree.

Theorem (Blekherman, Iliman, J., Velasco)

- (1) g(X) = 0 (componentwise) if and only if X is a variety of minimal degree.
- (2) g(X) has only one non-zero component if and only if $\epsilon(X) = 1$. In this case g(X) = (0, ..., 0, 1).

Note:

- (1) rediscovers the result by Blekherman, Smith and Velasco showing that $P_X \neq \Sigma_X$ if X is not of minimal degree.
- Not only the varieties of minimal degree (DelPezzo, Bertini) but also those with $\epsilon(X)=1$ (Zak) are completely classified.

 $X = \nu_4(\mathbb{RP}^2) \subseteq \mathbb{RP}^{14}$ 4th Veronese embedding of \mathbb{RP}^2

$$[x_0:x_1:x_2]\mapsto [x_0^4:x_0^3x_1:x_0^3x_2:\ldots:x_2^4]$$

 $X = \nu_4(\mathbb{RP}^2) \subseteq \mathbb{RP}^{14}$ 4th Veronese embedding of \mathbb{RP}^2

$$[x_0:x_1:x_2]\mapsto [x_0^4:x_0^3x_1:x_0^3x_2:\ldots:x_2^4]$$

Then $\operatorname{codim}(X) = 12$ and

$$g(X) = (\underbrace{0, \dots, 0}_{10}, 2, 3).$$

 $X = \nu_4(\mathbb{RP}^2) \subseteq \mathbb{RP}^{14}$ 4th Veronese embedding of \mathbb{RP}^2

$$[x_0:x_1:x_2]\mapsto [x_0^4:x_0^3x_1:x_0^3x_2:\ldots:x_2^4]$$

Then $\operatorname{codim}(X) = 12$ and

$$g(X) = (\underbrace{0, \dots, 0}_{10}, 2, 3).$$

 $X = \nu_4(\mathbb{RP}^3) \subseteq \mathbb{RP}^{34}$ 4th Veronese embedding of \mathbb{RP}^3 .

$$[x_0: x_1: x_2: x_3] \mapsto [x_0^4: x_0^3x_1: x_0^3x_2: \dots: x_3^4]$$

 $X = \nu_4(\mathbb{RP}^2) \subseteq \mathbb{RP}^{14}$ 4th Veronese embedding of \mathbb{RP}^2

$$[x_0:x_1:x_2]\mapsto [x_0^4:x_0^3x_1:x_0^3x_2:\ldots:x_2^4]$$

Then $\operatorname{codim}(X) = 12$ and

$$g(X) = (\underbrace{0, \dots, 0}_{10}, 2, 3).$$

 $X = \nu_4(\mathbb{RP}^3) \subseteq \mathbb{RP}^{34}$ 4th Veronese embedding of \mathbb{RP}^3 .

$$[x_0:x_1:x_2:x_3] \mapsto [x_0^4:x_0^3x_1:x_0^3x_2:\ldots:x_3^4]$$

Then $\operatorname{codim}(X) = 31$ and

$$g(X) = (\underbrace{0, \dots, 0}_{23}, 3, 10, 16, 21, 25, 28, 30, 31).$$

Theorem (Blekherman, Iliman, J., Velasco)

Let $X = \nu_d(\mathbb{RP}^2) \subseteq \mathbb{RP}^{\binom{d+2}{2}-1}$ be the d^{th} Veronese embedding of \mathbb{RP}^2 . Then

$$g_j(X) = \begin{cases} 0, & \text{if } j \leq \binom{d+1}{2} \\ \left(j - \binom{d+2}{2}\right) (d-1) - \binom{j+1-\binom{d+1}{2}}{2}, & \text{otherwise.} \end{cases}$$

Theorem (Blekherman, Iliman, J., Velasco)

Let $X = \nu_d(\mathbb{RP}^2) \subseteq \mathbb{RP}^{\binom{d+2}{2}-1}$ be the d^{th} Veronese embedding of \mathbb{RP}^2 . Then

$$g_j(X) = \begin{cases} 0, & \text{if } j \leq {d+1 \choose 2} \\ \left(j - {d+2 \choose 2}\right)(d-1) - {j+1 - {d+1 \choose 2} \choose 2}, & \text{otherwise.} \end{cases}$$

Note:

The growth in each step is extremal.

Theorem (Blekherman, Iliman, J., Velasco)

Let $X = \nu_d(\mathbb{RP}^2) \subseteq \mathbb{RP}^{\binom{d+2}{2}-1}$ be the d^{th} Veronese embedding of \mathbb{RP}^2 . Then

$$g_j(X) = \begin{cases} 0, & \text{if } j \leq {d+1 \choose 2} \\ \left(j - {d+2 \choose 2}\right)(d-1) - {j+1 - {d+1 \choose 2} \choose 2}, & \text{otherwise.} \end{cases}$$

Note:

The growth in each step is extremal.

Question:

What about gap vectors of general Veronese embeddings of \mathbb{RP}^m ?

Conjecture (Blekherman, Iliman, J., Velasco)

Let $X = \nu_d(\mathbb{RP}^m)$. Let

$$j^* = \left\lceil \binom{n+d}{d} - (n+1) + \frac{1}{2} - \sqrt{(n+\frac{1}{2})^2 + 2\binom{n+2d}{2d} - 2(n+1)\binom{n+d}{d}} \right\rceil.$$

Then

(1)
$$g_i(X) = 0$$
 for $1 \le j < j^*$,

(2)
$$g_j(X) = {m+2d \choose 2d} - j(m+1) - {m+d \choose d} - j+1 \choose 2}$$
, for $j^* \le j \le \operatorname{codim}(X)$.

Thank you for your attention!