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The main actors

A polynomial p ∈ R[x1, . . . , xm] is non-negative if p(x) ≥ 0 for all
x ∈ Rm.

A polynomial p ∈ R[x1, . . . , xm] is a sum of squares if there exist
pi ∈ R[x1, . . . , xm] such that p =

∑
i p2

i .

Central question: When can a non-negative polynomial be written
as a sum of squares?
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Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a
sum of squares precisely in the following cases:

p is bivariate (univariate non-homogeneous case),

p is quadratic,

p is of degree 4 in 3 variables (ternary quartics).

In all other cases, there exist non-negative polynomials that are not
sums of squares.

Though Hilbert did not provide an example, his proof can be used
for the construction of such polynomials (Robinson, Reznick, etc.).
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The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not
a sum of squares (Motzkin, around 1965).

M(x , y , z) := x2y4 + x4y2 + z6 − 3x2y2z2

It can be shown that . . .

M(x , y , z) is non-negative (arithmetic-geometric mean
inequality):

x2y4 + x4y2 + z6

3 ≥ 3
√

(x2y4)(x4y2)(z6).

M(x , y , z) cannot be written as a sum of squares.
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A related question: Hilbert’s 17th Problem

Is it true that we can write every non-negative polynomial f as a
sum of squares of rational functions:

f =
∑

i

(
gi
hi

)2
?

Equivalently:
Given a non-negative polynomial f , does there exist a sum of
squares g such that f · g is a sum of squares:

f · g =
∑

i
p2

i ?

Answer: YES! (Artin, 1927)

BUT: Degree of the multiplier may be very large.
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The Motzkin polynomial revisited

Recall:
M(x , y , z) := x2y4 + x4y2 + z6 − 3x2y2z2

(x2 + y2)2 ·M(x , y , z) can be written as a sum of squares.

(x2 + y2)2 ·M(x , y , z) =
(
(x2 − y2)z3)2

+
(
x2y(x2 + y2 − 2z2)

)2

+
(
xy2(x2 + y2 − 2z2)

)2

+
(
xyz(x2 + y2 − 2z2)

)2

⇒ M(x , y , z) can be written a sum of squares of rational
functions with denominator x2 + y2.
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A more general story

X ⊆ RPm real projective variety

I(X ) ⊆ R[x0, . . . , xm] real radical ideal of X

R = R[x0, . . . , xm]/I(X ) coordinate ring of X

PX ⊆ R2 quadratic polynomials that
are non-negative on X

ΣX ⊆ R2 quadratic polynomials that
are sums of squares of linear forms in R

Question: When is PX = ΣX?
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When is PX = ΣX?

A non-degenerate irreducible variety X ⊆ CPm is called a variety of
minimal degree if

deg(X ) = codim(X ) + 1.

Theorem (Del Pezzo, 1886; Bertini, 1908)

X is a variety of minimal degree if and only if X is one of the
following:

a quadratic hypersurface,
the Veronese embedding of CP2 into CP5,
a rational normal scroll,
a (multiple) cone over any of the above.
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When is PX = ΣX?

A non-degenerate irreducible variety X ⊆ CPm is called a variety of
minimal degree if

deg(X ) = codim(X ) + 1.

Theorem (Blekherman, Smith, Velasco; 2013)

Let X ⊆ RPm be a non-degenerate, real irreducible projective
variety.

Then PX = ΣX if and only if X (C) is a variety of minimal degree.
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Why is this a generalization of Hilbert?

Hilbert considered homogeneneous polynomials of even degree.

Blekherman, Smith and Velasco restricted to degree 2 polynomials.

Their classification also solves the problem for polynomials of
arbitrary even degree:

Under the d th Veronese embedding:

νd : RPm → RP(m+d
d )−1

[x0 : x1 : . . . : xm] 7→ [xd
0 : xd−1

0 x1 : . . . : xd
m]

polynomials of degree 2d on X correspond to polynomials of
degree 2 on νd (X ).

Hence: PX ,2d = Pνd (X) and ΣX ,2d = Σνd (X).
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Why do we care?

Testing non-negativity is NP-hard.

Testing whether a polynomial is a sum of squares can be done
in polynomial time.

Many problems in combinatorial optimization can be modelled
as minimizing a quadratic function p on a semialgebraic set X .

If our aim is to determine the minimum

p∗ = min
x∈X

p(x) = max
p−λ∈PX

λ,

we can instead compute the approximation

pSOS = max
p−λ∈ΣX

λ.

The difference between PX and ΣX determines the quality of the
approximation.
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Today

What geometric features of X control the dimensions of
generic exposed faces of PX and ΣX?

Dimensional differences between exposed faces of PX and ΣX .

Combinatorics and geometry of gap vectors.

Gap vectors of Veronese varieties.
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2 Dimensions of the faces of PX and ΣX

3 Dimensional differences and gap vectors
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Setting

X ⊆ RPm non-degenerate, real projective variety

I(X ) ⊆ R[x0, . . . , xm] real radical ideal of X

R = R[x0, . . . , xm]/I(X ) coordinate ring of X

PX ⊆ R2 quadratic polynomials that
are non-negative on X

ΣX ⊆ R2 quadratic polynomials that
are sums of squares of linear forms in R
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Exposed faces

X ⊆ RPm non-degenerate, real projective variety

For Γ ⊆ X let: P(Γ) be the set of forms in
PX that vanish on Γ.

Σ(Γ) be the set of forms in
ΣX that vanish on Γ.

Note:
PX and ΣX are full-dimensional, convex, pointed cones in R2.

P(Γ) and Σ(Γ) are exposed faces of PX and ΣX .

In this talk: We want to determine the dimensions of generic
exposed faces P(Γ) and Σ(Γ).
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Dimension of Σ(Γ)

Theorem (Blekherman, Iliman, J., Velasco)

Let X ⊆ RPm be a non-degenerate, real projective variety and let
Γ ⊆ X be a finite set of points.

Let Y be the projection of X away from the projective subspace
〈Γ〉 that is spanned by Γ and let S be the homogeneous coordinate
ring of Y .

Then
dimΣ(Γ) = dimS2.

Regarding non-negative polynomials, we cannot determine the
dimension of P(Γ) for any set of points Γ ⊆ X .

We need an extra condition: independence.
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Independent sets

Γ ⊆ X finite set of non-singular points

〈Γ〉 projective subspace of RPm spanned by Γ

Γ is independent if
(1) the equality 〈Γ〉 ∩ X = Γ holds,

(2) the projective subspace 〈Γ〉 has dimension |Γ| − 1, and,

(3) for every point p ∈ Γ, the equality Tp(X ) ∩ 〈Γ〉 = {p} holds,
where Tp(X ) is the tangent space of X at p.

Geometrically:
(2) means that the points in Γ are projectively independent.

(1) and (3) say that 〈Γ〉 and X intersect transversely and the
intersection is Γ.
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Independent sets: Why do we care?

X ⊆ RPm non-degenerate variety of codimension c. Then:

(1) The set of independent c-tuples of points of X is a non-empty
open dense subset of X c .

(2) If X (C) is of minimal degree, then the set of independent
(c + 1)-tuples of points of X is a non-empty open dense
subset of X c+1.

(3) The maximum cardinality of an independent set of points of
X is c, unless X (C) is a variety of minimal degree, in which
case it is c + 1.

Bottom line: A generic set of points of size ≤ c is independent.
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Dimension of P(Γ)

Theorem (Blekherman, Iliman, J., Velasco)

Let X ⊆ RPm be a non-degenerate, real projective variety and let
Γ ⊆ X be a generic set of points.

Then
dimP(Γ) = dimR2 − |Γ|(dimX + 1).

We first show that P(Γ) is full-dimensional in the vector space
of quadratic forms vanishing to order ≥ 2 at all points of Γ.
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The gap vector

X ⊆ RPm non-degenerate, real projective variety

For 1 ≤ ` ≤ codim(X ) = c, we set

g`(X ) = dimP(Γ)− dimΣ(Γ),

where Γ ⊆ X is a generic set of points with |Γ| = `.

g(X ) = (g1(X ), g2(X ), . . . , gc(X )) is called gap vector of X .

The gap vector measures dimensional differences between generic
exposed faces of PX and ΣX .
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Quadratic deficiency

Let X ⊆ RPm be a non-degenerate variety of codimension c.

The
number

ε(X ) :=
(
c + 1
2

)
− dim I(X )2

is called quadratic deficiency of X .

Theorem (Blekherman, Iliman, J., Velasco)

Let X ⊆ RPm be a non-degenerate, real projective variety and let
Γ ⊆ X be a generic set of points of cardinality ` ≤ codim(X ).

Let Y be the projection of X away from 〈Γ〉.

Then
g`(X ) = ε(X )− ε(Y ).
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Combinatorics of gap vectors

Recall:

g`(X ) = dimP(Γ)− dimΣ(Γ), for 1 ≤ ` ≤ codim(X ) = c

The gap vector has the following properties:

(1) gc(X ) = ε(X ) =
(c+1

2
)
− dim I(X )2
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Combinatorics of gap vectors

Recall:

g`(X ) = dimP(Γ)− dimΣ(Γ), for 1 ≤ ` ≤ codim(X ) = c

The gap vector has the following properties:

(1) gc(X ) = ε(X ) =
(c+1

2
)
− dim I(X )2

(2) gc−1(X ) =
{
0, if X is a variety of minimal degree.
ε(X )− 1, otherwise.
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Combinatorics of gap vectors (cont’d)

Recall:

g`(X ) = dimP(Γ)− dimΣ(Γ), for 1 ≤ ` ≤ codim(X ) = c

The gap vector has the following properties:

(3) 0 ≤ g1(X ) ≤ g2(X ) ≤ · · · ≤ gc(X )

(4) gj+1(X )− gj(X ) ≤ c − j for 1 ≤ j ≤ c − 1 (bounded growth).
Moreover, we can classify the situation, when extremal growth
occurs.

(5) If gs+1(X )− gs(X ) = c − s for some s < c, then
gj+1(X )− gj(X ) = c − j for all s ≤ j ≤ c − 1.
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How simple can a gap vector be?

Theorem (Blekherman, Iliman, J., Velasco)

(1) g(X ) = 0 (componentwise) if and only if X is a variety of
minimal degree.

(2) g(X ) has only one non-zero component if and only if
ε(X ) = 1. In this case g(X ) = (0, . . . , 0, 1).

Note:
(1) rediscovers the result by Blekherman, Smith and Velasco
showing that PX 6= ΣX if X is not of minimal degree.

Not only the varieties of minimal degree (DelPezzo, Bertini)
but also those with ε(X ) = 1 (Zak) are completely classified.
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Veronese embeddings

X = ν4(RP2) ⊆ RP14 4th Veronese embedding of RP2

[x0 : x1 : x2] 7→ [x4
0 : x3

0 x1 : x3
0 x2 : . . . : x4

2 ]

Then codim(X ) = 12 and

g(X ) = (0, . . . , 0︸ ︷︷ ︸
10

, 2, 3).

X = ν4(RP3) ⊆ RP34 4th Veronese embedding of RP3.

[x0 : x1 : x2 : x3] 7→ [x4
0 : x3

0 x1 : x3
0 x2 : . . . : x4

3 ]

Then codim(X ) = 31 and

g(X ) = (0, . . . , 0︸ ︷︷ ︸
23

, 3, 10, 16, 21, 25, 28, 30, 31).
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d th Veronese embeddings of RP2

Theorem (Blekherman, Iliman, J., Velasco)

Let X = νd (RP2) ⊆ RP(d+2
2 )−1 be the d th Veronese embedding of

RP2. Then

gj(X ) =

0, if j ≤
(d+1

2
)(

j −
(d+2

2
))

(d − 1)−
(

j+1−(d+1
2 )

2

)
, otherwise.

Note:
The growth in each step is extremal.

Question:
What about gap vectors of general Veronese embeddings of RPm?
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d th Veronese embeddings of RPm

Conjecture (Blekherman, Iliman, J., Velasco)
Let X = νd (RPm). Let

j∗ =

⌈(n + d
d

)
− (n + 1) +

1
2

−

√
(n +

1
2

)2 + 2
(n + 2d

2d

)
− 2(n + 1)

(n + d
d

)⌉
.

Then
(1) gj(X ) = 0 for 1 ≤ j < j∗,

(2) gj(X ) =
(m+2d

2d
)
− j(m + 1)−

((m+d
d )−j+1

2

)
, for

j∗ ≤ j ≤ codim(X ).
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Thank you for your attention!
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